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curves were calculated by assuming the same values of aetivation energy,
temperature, frequency factor and f-parameter.

The concentration of trapped charges and, therefore, the associated PIP
electric field are approximately constant for time intervals which are greatly
reduced with the decrease in initial filling, in agreement with the experimental
data in fig. 3.

4. — Conclusions.

The decay of the PIP electric fields associated with the charges trapped in
discrete levels at the surfaces of anthracene crystals has been studied.

The experimental data show that the PIP electric fields are constant during
definite time,inte’ri%als. The intervals depend on the temperature and on the
initial concentration of charges trapped.

A model for the emptying kinetics of a single superficial trapping level has
been developed: the computed decay curves show a dependence on the tem-
perature and on the initial filling which is in agreement with the experimental
data.

@ RIASSUNTO

La cinetica di svuotamento dei livelli superficiali di intrappolamento in cristalli di
antracene & stata studiata per mezzo di segnali di fotocorrente pulsata. E stata messa
in evidenza una forte dipendenza dalla temperatura e dalle condizioni iniziali di riem-
pimento dei livelli. £ stato sviluppato un modello cinetico in buon accordo con i risultati
sperimentali.
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Summary. The motion of a mass point in a central potential is con-
sidered. It is usually assumed that the projection of the angular mo-
mentum on the radius vector is equal to zero. It is shown that, if this
agsumption is relaxed, the angular part of the Hamiltonian becomes
identical to the angular part of the monopole Hamiltonian given by Dirac.

1. — Introduction.

Let us consider the classical motion of a mass point in a cenfral potential
U(r). In spherical co-ordinates the Hamiltonian can be written as
i

I P

2 —
(1) % 2mr? + 2m

+ Ulr),

where I = L = [rxp] is the orbital angular momentum. Expression (1)
might at first seem to be the most general Hamiltonian quadratic in mo-
mentum which possesses spherical symmetry. This is not, however, the case.
There are nontrivial generalizations of 5# which describe motion under spher-
ically symmetric conditions though they are far from being invariant under
rotations. We discuss in some detail an important modification of »# which
is of this type.

(*) Student of the Roland Estvos University, Budapest.
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Let us denote the Poisson bracket of » and v by (u, v) and the components
of r by ;. Since

(2) (Liy @) = €40,

(3) (s, 1) = e e,

the components of I can be considered as infinitesimal generators of rotations.
From (3) it follows that (I, I?) = (I, ) = 0; therefore, the Hamiltonian (1)
is rotationally invariant, i.e. it describes motion under isotropic conditions.

The Hamiltonian (1) is consistent with the constraint = const. The first
tierm of 5# is equal to the kinetic energy of motion on a sphere and I2 can be
considered as the Hamiltonian H of a spherical pendulum with the moment
of inertia equal to %:

H=1I2.
Our choice of L for I leads to the constraint
(4) In=0,

where n = (1/r)r and it is this relation which can be generalized. Let us as-
sume that relations (1)-(3) hold, but (4) is not valid. We show in sect. 3 that
In may be at most a constant which will be denoted by 1o. Thus, instead of (4),
we require

(5) In =

DOj=

g.

As a consequence of (2) and (3), 5 continues to describe motion under spherically
symmetric conditions and it remains consistent with the constraint r = const.
‘When the latter is imposed, 5# is equal to the kinetic energy up to a constant
term ¢2/8r2 which can be absorbed into U(r). Indeed,

. Iz 1
= ) = X7
and, using (5), we have

Iz 1 o? 1 1 2 o? 1 . o?
P === 292 2 —_— T —_— — e 2 —
2mre  2mrt (I r (Ir) ) + 8rz 2 m (mr2 [IX r]) + 82 2 mrt - 8r2

This relation shows that H = I? ecan be considered as the Hamiltonian
of a kind of spherical pendulum (with the moment of inertia equal to 1) even
when ¢ % 0. The question arises: what will be the expression for I which
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replaces the relation I = [r x p] when ¢ 5= 0? In order to answer this question
one has to solve (1)-(3) and (5) for I in terms of the canonical variables
r and p. The solution is expected to be essentially unique since energy and
angular-momentum conservation completely determine the motion and the
defining relations (1)-(3), (5) do not contradict these conservation laws.

The expression for I will be derived in sect. 3. The Hamiltonian H = I2
will turn out to be identical to the angular part of the Hamiltonian for the
motion of an electrically charged particle in the field of a massive magnetic
monopole which was first obtained by Dirac (). '

DirAc derived his H starting from electrodynamies, 7.e. within the context
of a definite dynamics. We will obtain the same H from (1)-(3) and (5)
without any special dynamical assumption. This means that the monopole
Hamiltonian has to be applied whenever a constant nonzero angular mo-
mentum acts along the radius vector and the particle, moving in the potential
U(r), has no degrees of freedom other than the position.

The Hamiltonian H is not manifestly invariant under rotations. In the
derivation given by Dirac this fact appears as a consequence of the nonexistence
of a vector potential defined everywhere when a magnetic charge is present.
In our treatment notions like magnetic charge and vector potential do not
arise and the necessity for the violation of manifest rotation invariance emerges
in a rather different way.

2. — Note on dynamical gauge transformations.

It is well known that relations of the type p = 0L/d¢ or ¢ = 0H/Op con-
necting velocities and momenta cannot be tested experimentally since there
is no way, to measure momenta independently of the velocities. These relations,
therefore, serve to define momenta through velocities. When a total derivative
is added to L, the dynamical content of the theory remains the same but the
expression of p as a function of ¢ usually changes its form. There is no unique
way to assign definite momenta to a given state (i.e. given positions and ve-
locities) since they depend on the Lagrangian which is defined only up to a
total derivative.

In the canonical description the generator function

D = qup; + (s .ees @uy t)

(') P. A. M. Drrac: Proc. Roy. Soc., 133 A, 60 (1931).
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leads to the canonical transformation

0> G = Gr,

cw

Dr—> Dy “_“pr_é'q'—r7

! ow Sw
Hq, p) —~H'(p, 9) = H(p—~—a-g,q) +5 -

The Hamiltonians H' and H describe the same dynamies in the following sense:
if initial data are given in terms of positions and velocities, then the positions
and the velocities will be the same at any moment if either H or H' is used
to calculate trajectories. The momenta will be different for the two cases,
but they are not measurable quantities.

Canonical transformations of this kind, leaving the dynamics unchanged,
will be called dynamical gauge tramsformations. Their existence makes it pos-
sible to include the interaction of charged particles with the electromagnetic
field in the canonical framework. If—for example—H contains the vector
potential 4 and the momenta only in the combination p— (e/¢) 4, then an
electrodynamical gauge transformation 4 —~ 4'= A4 | Vy can also be viewed
as a dynamical gauge transformation with w = (efe) . Since the latter does
not lead to any observable dynamical effect, the unobservability of the electro-
dynamical gauge transformations through the particle motion is ensured.
We emphasize, however, that dynamical gauge transformations represent a
purely dynamical concept. In defining them there is no need to make any
reference to electrodynamics.

In quantum mechanics the problem of measurability of different physical
quantities is much more complicated than in classical mechanies. Never-
theless, if we assume, relying on experience, that the vector potential is not
measurable and the interaction between matter and electromagnetic field is
of the usual gauge-invariant form, then canonical momentum is not a meas-
urable quantity in quantum mechanies either. This is equivalent to the as-
sumption that wave functions which differ from each other in a local phase
factor alone cannot be distinguished by any measurement.

In quantum mechanics there is a special restriction on w. Namely exp [(¢/%) w]
must be single valued. If this is the case, the eigenfunctions of any two op-
erators O(q, p) and O(q, p'), where p. = p, — dw/dq,, differ from each other
only in this local phase factor which is not measurable. Let us assume now
that exp [(¢/f) w] is not single valued. If y is some eigenfunction of O(g, p),
then exp [(¢/#)w]y is not single valued and cannot be considered as an eigen-
function of O(g, p') since—according to basic postulates of quantum mechanics
—only single-valued functions are acceptable as solutions of eigenvalue equations.
In this case the true eigenfunction of O(g, p’) will differ from y more signif-

icantly than just in a phase factor and this can lead to observable physical

effects.
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An immediate consequence is that in quantum theory two vector potentials
which differ from each other in a gauge function y may be distinquished if
oxp [(ieffic) ] is multivalued. A famous example is the Aharonov-Bohm effect.

Our subsequent considerations are strongly based on dynamical gauge

transformations. We hope that this short summary will help to avoid misunder-
standings.

3. — The classical case.

‘We look for I in the form
(6) I=L-+S=[rxp]tS8§.

According to (2) S must not depend on p, it may be a function of r alone and
thus (S;, §;) = 0.

Let us denote the sealar product of I and r by 7: Ir = Sr = f. It follows
from (3) that f may depend only on 7. From (#, I) = 0, we have (p3, I) ==
= (p}, §) = 0, which holds if (rp,S)= 0. Multiplying this by r, we get
(rp, Sr)— (rp, r)S = 0, which can be written as (f, rp) = or r(df/dr) = f.
The function f(r) is, therefore, proportional to » and (5) is the only possible
generalization of (4).

From (5) we have

(7 Sn=1o,
while (3) leads to the relation

(8) Ly 85) + (84 L) = 8-

Let us assume that S is a dynamical vector under which we mean that it
transforms as a vector when the co-ordinate system is rotated and, in addition,
it obeys the relation

9 (Iu Si)‘: siijk’

which is the analogue of (2).

In this case (8) reduces to (S;, L;) = 0 and for an arbitrary unit vector »
we have (xS, L) = 0. Hence uS = ¢(r) and, since » is arbitrary, we obtain
¢=0, S=0 and o= 0. '

We have, therefore, to assume that though S is a geometrical vector (i.e.
it transforms as a vector when the co-ordinate system is rotated) it is not a
dynamical vector since it must not obey (9).

Let us write the condition (9) in the form

(10) - (Lx, ) = [S xx],
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where » is an arbitrary unit vector. As indicated above, S must not satisfy (10)
for all possible %, but there may exist linear subspaces of »’s for which (10)
is fulfilled. Such a subspace may be a plane, a line or it may happen that there
are no x satisfying (10) at all. Now these three cases will be treated separately.

a) Let us assume that (10) is satisfied for x’s which are orthogonal to
some unit vector e. For these »’s we have from (8) (xS, L) = 0 and this leads
to xS = e(r). The direction of the ®’s is arbitrary in the plane orthogonalto e.
Hence, the function ¢(r) must vanish and we obtain that S is parallel to e.
From (7) we get

This expression contradicts (8) and, therefore, (10) cannot be satisfied by vectors
» lying in a plane.

b) We agsume that (10) is fulfilled only if » is equal to some given unit
vector e:

(11) (Le, S) =[S xe].

This will be the case if S is a geometrical vector depending on r and e. The
latter is a numerical vector which has zero Poisson bracket with both r and p.
But then one has to ensure that the dynamies will be independent of the diree-
tion of e since the latter cannot be identified with any physical degree of
freedom. This will indeed be true if any change of e turns out to be equivalent
to a dynamical gauge transformation the condition for which can be formulated
as follows.

Let S correspond to e and S’ correspond to some e’ different from e. The
change e — e' is equivalent to a dynamiecal gauge transformation if

[rxpl+8'=[rx(p— Vo) + S
or

(12) B S§'—8=[Voxr]

with some function o = w(e, €', r).

We show that, if S is a geometrical vector, satisfying (8), then (12) is auto-
matically fulfilled.

To see this let us consider first an infinitesimal rotation of the co-ordinate
system around the unit vector k by an angle dx. Since §, r and e are geo-
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metrical vectors, they change by an amount

38 = [kdax ST,
(13) dr = [kdaxr],
de = [kduxe].

This same change of § can also be expressed as

a8, 38y <08 a8,
(14) BS,Z g—ée—J—SEJJF gawjgwg—-gﬁ‘Be,—i“ ?%—J(l‘], kLS“),

where the relation 3r = (r, kL 8x), following from (2) and (13), was used.
Since
za—s(w,,kLScx) (8., kL 3%) ,

i

(14) can also be written as

Z 1 83; + (S,, kL BOC)

5 O6;

or, by using (13),

(15) Z

i '5

S So,+ (8, kL 3) = [k 3 S]; -

Let us multiply (8) by k; 8« and sum over y We get
(16) (Liy kS Sat) + (8;, EL 8x) = [k 8o x S]; .
Subtracting (16) from (15), we arrive at the expression
(17 (L;, ES Sot) == 2,:%% de;

Since S does not depend on p, we can write

(LiykS) = 3 (Lyiy 8) k= 2k, S L, ;)-Zkf”*ezufvz—[v(ks) rli.

i
) isk a E N

Putting this into (17), we have

(18) Mz gf' d¢; = [V(ESdu) X r]; 74
i i
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where Je is given by (13). This relation is valid for arbitrary unit vector k
and parameter Su«.

Let us turn to the transformation e —e’. We will consider infinitesimal
transformations, therefore e'= e - Ae. Then the condition for this to be a
dynamical gauge transformation can be written as (see (12))

)
(19) ‘,’f; Ae, = [Vor X r]; .

i Cf;

Now the most general infinitesimal transformation e — e’ is a rotation about
some axis k by an amount 3x. Therefore, Ae = Se and a comparison with (18)
shows that (19) is fulfilled with . -

Sw = kS 8.

The explicit form of S can be obtained in the following way. Multiplying (8)
by ¢;, summing over ¢ and using (11), we see that (eS, L,) = 0. Hence,

(20) eS = ¢(r),

where ¢ is an arbitrary function of r.
Let us now take the scalar product of (8) with #,. Since rL = 0, the first
term does not contribute and we get

(rS, L;)— Sz, L)) =[S xr];.

This equation is fulfilled as a consequence of (7) and (2).

Now we can see that (8) is always satisfied if (7) and (20) do so. Indeed,
we take an arbitrary vector a, multiply (8) by «, and sum over i. The vector a
can be written as a linear combination of e, r and [e xr]. As we have just
seen, the terms proportional to e and r do not contribute and we obtain

[exrl{(L;, 8;) + (8 L) — €8} = 0.

Now we can take another vector b, multiply this expression by b, and sum
over j. The vector b can also be expressed as a combination of e, r and [e X r].
Again terms containing e and r vanish and we get

[exr]iex "]i{(Li, 8;) 4 (84, L) — ein Slc} =0.

But this condition is satisfied due to the antisymmefry of the expression in
the curly bracket.

Since @ and b were arbitrary vectors, this consideration shows that eq. (8)
is indeed satisfied as a consequence of (7) and (20). '
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We look for S in the form
(21) S = ar + fe + ale xr]

and put this expression into (7) and (20). We get
aler) +f=rc(r), art-+ Pler)=(a/2)r,
from which we obtain

(o/2)r— (er)e __er*—(g/2)r(er)

L 1 R A P

We substitute this into (21) and write S in the form

o il 1 b{r)
(22) S:§;T+aV*§{;"r——(er)+'r‘2-—(er)2}W’
where
(23) V—=1lexr], W=I[rxV], c(vr):wg(l—}—b('r)),

and a is an arbitrary function of + and (er). Notice that, though relations (2},
(3), (), defining S, contain partial derivatives of S, we have obtained (2)
without actually solving differential equations.

Now we will show that different choices for a and b—where a is a function
of » and (er) and b is a function of r—correspond to dynamical gauge transfor-
mations.

Let ug use the notation S’ when some a’ and b’ are chosen instead of a and b.
Then

B
where
(25) A=d—a, B:%(b’-——b),

A is a function of » and (er), B is a function of 7.
By means of (23) and (24), eq. (12) can be written as

2— (er

The transformation a, b — ', b’ is equivalent to a dynamical gauge transfor-
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madtion if (26) is satisfied with some suitably chosen w.
From (26) we have

B

27 szAe—l—m

V+Cr,

where C is an arbitrary scalar function of r.
Without losing generality, we can choose e=(0, 0,1). Then A=A(r, cos f),
B = B(r), ¢ = O(r, cos 0, p). In polar co-ordinates,

V,=Ve=0, Vy=rsinf, e =cosl, e=—sinh, =0

and (27) can be written as

ow

(28) §;=Acosﬁ—i—0¢,
dw .

(29) M = — Arsind,
dw

(30) =

We have three integrability conditions. The condition

Sw O%w

dpob  260g op

is fulfilled automatically, while the other two lead to the equations

dB oC -
(31) o "'é};y
04 ol 04
(82) d(cos B) cosf + 3(cos0)  or
From (31) we have
1dB
(33) 0= (p;-&;+ D{r, cos0),

where D is an arbitrary function. Substituting this into (32), we get

oD ~aA—1~—-a~4—~-cosﬂ I(r,cos0) .
d(cosB)  or r d(cosB) = 7, 008

From here

cos §

D =[an-F(r, n) + Be)
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and O is defined up to an arbitrary B. With this C (27) can be integrated to
yield w which generates a dynamical gauge transformation equivalent to a,
b —a,b.

The simplest choice for ¢ and b is @ = b = 0. The function S, corresponding
to this choice, will be denoted by S® since L + S® is equal to I®, the angular
momentum in Dirac’s theory of the monopole. This can be proven by sub-
stituting the vector potential of the monopole

_ g [rXe]

rr—(er)

into [rx(p— (¢/e) A)]+ (o/2r)r and taking into account the relation Lo =
= (1/c) eg.

We have, therefore, shown that in classical mechanics conditions (1)-(3), (5)
lead to Dirac’s form of the angular momentum independently of any model.

¢) In the third case there is no unit vector x for which (10) is satisfied.
We will not consider this case in any detail, but confine ourselves to some re-
marks.
It is easy to see that this case is not empty. Let S°(e;) be functions which
satisfy (10) for » = e, (7) for ¢ = 1 and obey (8) as well. Then

S - zdiso(e

is a solution of (7) and (8) provided ¥ o; = ¢. It is obvious that, for this solu-

tion, (10) is not satisfied by any x. An arbiﬁra,ry change Ae; = [k,;du; X e;]
in e, is equivalent to a dynamical gauge transformation with o = z k;S(e;) da;.
The sum can be extended to an integral

S = f Se(et) dotr)

where e(n) is—for 0<n<l—a curve on the unit sphere. Looking at the ex-
pression for S° (eq. (22) with ¢ = 1), we see that S is singular on a surface con-
taining the origin and the directions e(y). In particular, when e(y) is a closed
curve, S is singular on a cone.

4, — The quantum case.

In quantum mechanics only those dynamical gauge transformations are
allowed for which exp[(i/#)w] is single valued and we have to clarify restrie-
tions imposed by this requirement on ¢ and I.

17 — Il Nuove Cimenlo B.
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First we have to investigate the o function which corresponds to a finite
change e — €’. Since, according to (22), S is singular on the line r? = (er)?,
there must exist a term in o which through (12) corresponds to this singularity.
We choose e = (0, 0, 1) and denote the singular part of § by s:

SFg(m +g@g% %:E(ﬁ*+MﬂW% 0.

r—z @ r*—zt 2\r—z  ri—2t

In the neighbourhood of the - z-semi-axis,

2 Co8 @ z-sing
’

o= (1+300) 72T,

(38 s= a(l + 5 000)

where p, ¢, 2 are cylindrieal co-ordinates. The cylindricalgcompbnents are

1
(35) . 8920(1—{*-517(2))-5’ SqJ:Sz:O-

The singular part of w, corresponding to (35), is of the form

(36) w=g@e.
Then

1 .
Vo = Eg(z)eq)+ g (z)q]ezi

where e, e, e, are the local unit vectors of the cylindrical-co-ordinate system.

Since [e, xe,] = e, we have in the neighbourhood of the - z—gemi-axis
1
(37) [Voxr]= E zg(z)e, .

Putting (35) and (37) into (12), we get

2 1557

—o(t4500) 5 =S, gte) = —o(1+ 50)

and

(38) w=—0o(1+1b(2)-p (z>0).

Similarly, on the negative z—semi-axis we have
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Equation (37) remains true and we get

(39) 96 =—202), o=—2Ib—2p (2<0).

- “

Let us fix |¢| = ¢. In the neighbourhood of the point z = ¢ on the z-axis we

have

) 7 1

exp [7—]/ w] ~ exp [~% a(l -+ 3 b(c)) 99]

(~ means proportionality). This will be single valued only if

o 1 .
(40) —-(1 + = b(c)) = | = integer .

# 2
At the point z = —¢,

ex i ex -?f zb(

p k w pi— ﬁ o 2 G) Pl

which is single valued if

(41)

b} =

b(c) = m = integer .

Hla

From (40) and (41) it follows that the necessary conditions for w to describe
a dynamieal gauge transformation are

(42) : % =l —m = n = integer
and
(43) ‘b:2%=mmn

In writing down s we have assumed that the coefficient a in (22) is not
singular on the z-axis.

Now we show that from the point of view of single valuedness around z
the coefficient a does not play any role.

Cylindrieal components of V are Vg =g, Vo= ¥V, = 0. Hence the term
aV in S changes only the ¢-component of s: s, = (0/2) ap instead of being zero.
According to (12) we have on the - z—semi-axis

(44) . —Zae=idVoXel,,
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which shows that Vo must have a p-component. We have to modify (36) to

(45) w = g(z)p + h(z, 0) .

The term 7 does not contribute to [Vw xXe.], and our previous considerations
remain unaltered. But

Voxel, = (Yol xedy=—5;
and (44) leads to }oap = 2(ch/0p), from which % can be determined. This
shows that the additional term % in w may indeed account for the term a¥ in S.
But & leads to a factor exp [(i/%)h(z, 0)] in exp [(i/%) w] which is single valued
and does not lead to any new restriction connected with single valuedness.

Let us now iﬁvestiga‘oe the transformations a, b —>a’, ', when the conditions
(42), (43) necessary for the quantum description are fulfilled. The function w
is the solution of (28)-(30) with B = }o(b'— b). According to (42), (43) this
can also be written as

(46) B = fi(m'— m),

where m and m’ are connected with b and b’ through b = 2(m/n), b'=2(m'/n)
(in the transformation a, b — a’, b’ ¢ and » remain unaltered).
The solution of (28)-(30) is of the form

w = By 4 q(r, cos 0),

since B = const and C = D(r, cos 0). But then, owing to (46), exp [(¢/f) w] is
single valued. This means that the necessary conditions (42), (43) are suf-
ficient for the transformation @, b —a’, b’ to be a dynamiecal gauge transfor-
mation. We can, therefore, take a = b = 0 again and the Dirac expression
I®? is the unique solution of (1)-(3), (5) in the quantum case also.

The function w, corresponding to a finite change e — €', has a simple geo-
metrical meaning (2) when a = b = 0. In order to see this we integrate the
relation 3w = kS da:

(47) wlr, e, &) =[kS(B)df

0

Here S(8) = S(e(f), r), e = e(0), e'= e(x) and k is a unit vector orthogonal
to e(f). Using (22), we have for a = b = 0

(3) A. FrengeL and P. Hrask6: Ann. of Phys., 105, 288 (1977).
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a5 46) [ e

0

w =

wiQ

where ¢ = fin. We notice that w depends only on the direction of r.

From this expression it can be deduced that o satisfies the Laplace equation
V2w = 0 since the integrand obeys this equation for any arbitrary k and e.

From (38) we see that for b = 0 the change of o under a complete revolution
around the axis e is equal to 2ns. Evidently, the same is true for e’ with the
opposite sign (see (12)). Combining this with the equation Ve = 0, we con-
clude that w is identical to the potential of a twofold layer in the e, e’ sector
with a density equal to ¢/2. But the latter is up to an arbitrary constant equal
to ¢/2 times the solid angle (e, €', r) of the sector e, e’ as seen from the point r:

(48) o(r, e, €') = - Q(e, &, r) -+ const .

This is the above-mentioned geometrical meaning of w.

The components of I can be considered as generators of rotations. This
possibility will be realized if one agrees to choose the arbitrary unit vector e
always in the direction of the z—co-ordinate axis. Then the term L in I describes,
as usual, the transformations (r) — y(R-'r), while S generates a dynamical
gauge transformation which rotates e from the old position of the z-axis into
the new one. The complete transformation of the wave function is given,
therefore, by the expression

(49) P(r) - exp [g wR] p(Br) .

The function oy is given by (48) if e and e’ are identified with the direction
of the z-axis before and after the rotation.

One might suppose that  is equal to zero when R is a rotation around the
z-axis (e'= e). However, the function S generates a nonzero exponent even
in this ease since, if we substitute k = e into (47) and use (20) and (23) with
b =10, we get w=— (¢/2). Now a general rotation R can be specified by
the Eulerian angles ¢, 0, y, the first and the third of which correspond to ro-
tation around the z-axis. It is, therefore, convenient to choose the constant
in (48) equal to — (¢/2)(¢ + ). With this choice (49) defines a representation
of the rotation group the generators of which are given by the components
of T(2).

One may now consider the function g in (49) unspecified and try to de-
termine it from the requirement that (49) be a representation of the rotation
group. The generators of this representation are of the form L - S, where S
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does not depend on p and the problem is to find all possible funetions S. But
it is just this problem we have solved above. Therefore, the expression
(1/%) oy, = (n[2)(2 — @ — ) with an integer n is the unique function for which (49)
defines a representation of the rotation group.

® KIVONAT

Témegpont mozgdsit vizsgdljuk centrslis potencislban. Altaldban felteszik, hogy az
impulzusmomentum vetiilete a részecske helyzetvektorira zérus. Ha ezt nem tesszik
fel, olyan Hamilton fiiggvényre jutunk, amelynek szogrésze a monopdlprobléma Dirac
altal adott Hamilton figgvényének szigrészével egyezik meg.

® RIASSUNTO ()

Si considera il moto di un punto di massa in un potenziale centrale. 8i assume di solito
che la proiezione dellimpulso angolare sul raggio vettore & uguale a zero. Si mostra
che, se si abbandona questa ipotesi, la parte angolare dell’hamiltoniana diventa iden-
tica alla parte angolare dell’hamiltoniana di monopolo, data da Dirac.

(*) Traduzione a cura della Redazione.

Pesrome ne monyueno.
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Summary. -range
pairwise forces effective up to second nearest neighbours and the electron-
ion interaction on the lines of Bhatia is considered to study the crystal
dynamies of b.c.c. metals by using an appropriate value of the screening
parameter. The volume force is averaged over the whole Wigner-Seitz
sphere. The ionic lattice is in equilibrium in a medium of electrons. The
present theory has been satisfactorily applied to compute the dispersion
curves, the frequency spectrum, the lattice specific heat, the Debye
characteristic temperature, the temperature dependence of the Debye-
‘Waller factor, the X-ray Debye temperature and the mean-square displace-
ment of the atoms of vanadium.

1. — Introduction.

Lattice vibrations play a dominant role in many solid-state phenomena.
All those physical properties of a crystal which depend on the heat motion of
the constituent particles require for their detailed explanation a knowledge
of the actual form of the phonon spectrum. In recent years, several workers (1-14)

(*) To speed up publication, the authors of this paper have agreed to not receive the
proofs for correction.
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